783 research outputs found

    Genetics of common polygenic ischaemic stroke: current understanding and future challenges.

    Get PDF
    Stroke is the third commonest cause of death and the major cause of adult neurological disability worldwide. While much is known about conventional risk factors such as hypertension, diabetes and incidence of smoking, these environmental factors only account for a proportion of stroke risk. Up to 50% of stroke risk can be attributed to genetic risk factors, although to date no single risk allele has been convincingly identified as contributing to this risk. Advances in the field of genetics, most notably genome wide association studies (GWAS), have revealed genetic risks in other cardiovascular disease and these techniques are now being applied to ischaemic stroke. This paper covers previous genetic studies in stroke including candidate gene studies, discusses the genome wide association approach, and future techniques such as next generation sequencing and the post-GWAS era. The review also considers the overlap from other cardiovascular diseases and whether findings from these may also be informative in ischaemic stroke

    Depression in small-vessel disease relates to white matter ultrastructural damage, not disability.

    Get PDF
    OBJECTIVE: To determine whether cerebral small-vessel disease (SVD) is a specific risk factor for depression, whether any association is mediated via white matter damage, and to study the role of depressive symptoms and disability on quality of life (QoL) in this patient group. METHODS: Using path analyses in cross-sectional data, we modeled the relationships among depression, disability, and QoL in patients with SVD presenting with radiologically confirmed lacunar stroke (n = 100), and replicated results in a second SVD cohort (n = 100). We then compared the same model in a non-SVD stroke cohort (n = 50) and healthy older adults (n = 203). In a further study, to determine the role of white matter damage in mediating the association with depression, a subgroup of patients with SVD (n = 101) underwent diffusion tensor imaging (DTI). RESULTS: Reduced QoL was associated with depression in patients with SVD, but this association was not mediated by disability or cognition; very similar results were found in the replication SVD cohort. In contrast, the non-SVD stroke group and the healthy older adult group showed a direct relationship between disability and depression. The DTI study showed that fractional anisotropy, a marker of white matter damage, was related to depressive symptoms in patients with SVD. CONCLUSION: These results suggest that in stroke patients without SVD, disability is an important causal factor for depression, whereas in SVD stroke, other factors specific to this stroke subtype have a causal role. White matter damage detected on DTI is one factor that mediates the association between SVD and depression

    Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    Get PDF
    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment.METHODS: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested.RESULTS: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed.CONCLUSIONS: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies

    Novel intelligent wavelet filtering of embolic signals from TCD ultrasound

    Get PDF
    Transcranial Doppler ultrasound can be used to detect emboli in blood flow for predicting stroke. Embolic signals have characteristic transient chirps suitable for wavelet analysis. We have implemented and evaluated the first on-line intelligent wavelet filter to amplify embolic signals building on our previous work in detection. Our intelligent wavelet amplifier uses the matching filter properties of the Daubechies 8th order wavelet to amplify embolic signals. Even the smallest embolic signal is enhanced without affecting the background blood flow signal. We show an increase of over 2db (on average) in embolic signal strength and an improvement in detection of 10-20%

    Cerebral Amyloid Angiopathy and the Fibrinolytic System: Is Plasmin a Therapeutic Target?

    Get PDF
    Cerebral amyloid angiopathy is a devastating cause of intracerebral hemorrhage for which there is no specific secondary stroke prevention treatment. Here we review the current literature regarding cerebral amyloid angiopathy pathophysiology and treatment, as well as what is known of the fibrinolytic pathway and its interaction with amyloid. We postulate that tranexamic acid is a potential secondary stroke prevention treatment agent in sporadic cerebral amyloid angiopathy, although further research is required

    Stroke genetics: prospects for personalized medicine.

    Get PDF
    Epidemiologic evidence supports a genetic predisposition to stroke. Recent advances, primarily using the genome-wide association study approach, are transforming what we know about the genetics of multifactorial stroke, and are identifying novel stroke genes. The current findings are consistent with different stroke subtypes having different genetic architecture. These discoveries may identify novel pathways involved in stroke pathogenesis, and suggest new treatment approaches. However, the already identified genetic variants explain only a small proportion of overall stroke risk, and therefore are not currently useful in predicting risk for the individual patient. Such risk prediction may become a reality as identification of a greater number of stroke risk variants that explain the majority of genetic risk proceeds, and perhaps when information on rare variants, identified by whole-genome sequencing, is also incorporated into risk algorithms. Pharmacogenomics may offer the potential for earlier implementation of 'personalized genetic' medicine. Genetic variants affecting clopidogrel and warfarin metabolism may identify non-responders and reduce side-effects, but these approaches have not yet been widely adopted in clinical practice

    Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change.

    Get PDF
    Cerebral small vessel disease (SVD) is the primary cause of vascular cognitive impairment and is associated with decline in executive function (EF) and information processing speed (IPS). Imaging biomarkers are needed that can monitor and identify individuals at risk of severe cognitive decline. Recently there has been interest in combining several magnetic resonance imaging (MRI) markers of SVD into a unitary score to describe disease severity. Here we apply a diffusion tensor image (DTI) segmentation technique (DSEG) to describe SVD related changes in a single unitary score across the whole cerebrum, to investigate its relationship with cognitive change over a three-year period. 98 patients (aged 43-89) with SVD underwent annual MRI scanning and cognitive testing for up to three years. DSEG provides a vector of 16 discrete segments describing brain microstructure of healthy and/or damaged tissue. By calculating the scalar product of each DSEG vector in reference to that of a healthy ageing control we generate an angular measure (DSEG θ) describing the patients' brain tissue microstructural similarity to a disease free model of a healthy ageing brain. Conventional MRI markers of SVD brain change were also assessed including white matter hyperintensities, cerebral atrophy, incident lacunes, cerebral-microbleeds, and white matter microstructural damage measured by DTI histogram parameters. The impact of brain change on cognition was explored using linear mixed-effects models. Post-hoc sample size analysis was used to assess the viability of DSEG θ as a tool for clinical trials. Changes in brain structure described by DSEG θ were related to change in EF and IPS (p < 0.001) and remained significant in multivariate models including other MRI markers of SVD as well as age, gender and premorbid IQ. Of the conventional markers, presence of new lacunes was the only marker to remain a significant predictor of change in EF and IPS in the multivariate models (p = 0.002). Change in DSEG θ was also related to change in all other MRI markers (p < 0.017), suggesting it may be used as a surrogate marker of SVD damage across the cerebrum. Sample size estimates indicated that fewer patients would be required to detect treatment effects using DSEG θ compared to conventional MRI and DTI markers of SVD severity. DSEG θ is a powerful tool for characterising subtle brain change in SVD that has a negative impact on cognition and remains a significant predictor of cognitive change when other MRI markers of brain change are accounted for. DSEG provides an automatic segmentation of the whole cerebrum that is sensitive to a range of SVD related structural changes and successfully predicts cognitive change. Power analysis shows DSEG θ has potential as a monitoring tool in clinical trials. As such it may provide a marker of SVD severity from a single imaging modality (i.e. DTIs)
    • …
    corecore